

Design Methodology for Safe & Arm Devices

Dipl.-Phys. Friedrich Sauerländer

NAWC WPNS

Ordnance Systems
Division
China Lake, CA

Who am I?

BWB WF I 5 Koblenz, Germany

Outline

- S&A Development Process
 - Steps to a safe S&A

- Fault Tree Analysis
 - How to do it right

S&A Design Process

Given Parameters

- basic requirements
- interfaces
- adverse environm.
- chosen arming environments

- ...

Design Variables

- arming environments
- arming logic/sequence
- basic S&A type
- explosive train
- fail safe features
- materials/parts
- internal signal processing

- ...

S&A Design Process

- 1) Design can be simplified
- 2) Design is fail safe
- 3) Preliminary FTA
- 4) Hazard Analysis
- 5) Sneak Circuit Analysis
- 6) ...

Outline

S&A Development Process

- Steps to a safe S&A

- Fault Tree Analysis
 - How to do it right

Fault Tree Analysis

• FTA is basis for quantification of risk (target: 1:10⁶)

FTA - Tree Structure

- top events are Premature Arming and Early Burst
- the Fault Tree must be build on and verified at least against:
 - (P)HA
 - FME(C)A
 - drawings & schematics
 - Operation Logic Tree (from IDA)
 - SCA
- a FTA must include Primary, Secondary and Command Faults (e.g. credible accidents, errors during manufacture)

FTA - Tree Structure

- the Fault Tree should be developed into a level, where every fault from the FME(C)A and other analyses is mentioned
- subsequent deletion of limbs must be mentioned and explained

FTA - Quantitative Analysis

- provide the origin of all used data, scaling factors and expressions and explain, why they are applicable
- provide all raw data necessary to duplicate the analysis (e.g. type component, failure rate, quality level, environmental factors)
- for ESAD the following standard sources of failure rates should be used (as of 04/2001)
 - EPRD-97
 - NPRD-95
 - NONOP-1
 - MIL-HDBK 217(F)

FTA - Quantitative Analysis

- pooling of data:
 - for a part only a limit of failure rate is given ("> ...")
 - and for similar parts the failure rates are well defined, the following expression may be used for pooling (EPRD-97):

$$\lambda_{pool} = \left(\prod_{i=1}^{n'} \lambda'_{i}\right)^{\frac{1}{n'}} \cdot \left(\sum_{i=1}^{n'} h'_{i}\right)^{\frac{1}{n'}} \cdot \left(\sum_{i=1}^{n} h$$

pooled parts

pooled parts with

failure

FTA - Quantitative Analysis

- apply a <u>safety factor of 5</u> to all probabilities (to compensate for statistical uncertainties and deviations of actual parts)
- probability of failure is accumulated over all phases of weapon life cycle
 - storage (ground, field, mobile,...); $\Sigma = 20$ years
 - logistic transportation
 - mounted on weapon or A/C carriage
 - launch & flight/fall

$$P(\lambda,t) = \sum_{i} \lambda_{i} \cdot t_{i}$$

P: probability of failure

 λ_i : failure rate in environment i

$$\lambda_i = MTBF_i^{-1}$$

 t_i : duration of environment i

FTA - Quantitative Analysis

Example 1:

Electronic part, highly reliable but sensitive to environment

Environment	Time	λ [10 ⁻⁶ /h]	P(λ,t)	%
Ground Storage (GB)	20 yrs. = 170,265 h	0.001	1.7 * 10 ⁻⁴	53
Field Storage (GF)	6 months = 4,383 h	0.01	4.4 * 10 ⁻⁵	14
Transportation (GM)	21 days = 504 h	0.05	2.5 * 10 ⁻⁵	8
A/C carriage (AUF)	7 days = 168 h	0.5	8.4 * 10 ⁻⁵	26
Launch & Flight (ML)	120 s = 1/30 h	5	1.7 * 10 ⁻⁷	0.05

3.2 * 10⁻⁴

FTA - Quantitative Analysis

Example 2:

Electronic part, less reliable, less sensitive to environment

Environment	Time	λ [10 ⁻⁶ /h]	P(λ,t)	%
Ground Storage (GB)	20 yrs. = 170,265 h	0.05	8.5 * 10 ⁻³	92
Field Storage (GF)	6 months = 4,383 h	0.1	4.4 * 10 ⁻⁴	5
Transportation (GM)	21 days = 504 h	0.2	1.0 * 10 ⁻⁴	1.1
A/C carriage (AUF)	7 days = 168 h	8.0	1.3 * 10 ⁻⁴	1.5
Launch & Flight (ML)	120 s = 1/30 h	2	6.7 * 10 ⁻⁸	0.001

9.2 * 10⁻³

Conclusion

I have tried to show

- "Best Practice" Way of S&A Development
 - General Step-By-Step List
- "Best Practice" for FTA
 - highlighted points for FTA structure
 - guidelines for quantitative analysis

based on experiences in Germany, USA and with NATO AC/310, SG II.